3.1095 \(\int \frac{c+d x^2}{(e x)^{3/2} (a+b x^2)^{3/4}} \, dx\)

Optimal. Leaf size=113 \[ -\frac{d \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt{e} \sqrt [4]{a+b x^2}}\right )}{b^{3/4} e^{3/2}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt{e} \sqrt [4]{a+b x^2}}\right )}{b^{3/4} e^{3/2}}-\frac{2 c \sqrt [4]{a+b x^2}}{a e \sqrt{e x}} \]

[Out]

(-2*c*(a + b*x^2)^(1/4))/(a*e*Sqrt[e*x]) - (d*ArcTan[(b^(1/4)*Sqrt[e*x])/(Sqrt[e]*(a + b*x^2)^(1/4))])/(b^(3/4
)*e^(3/2)) + (d*ArcTanh[(b^(1/4)*Sqrt[e*x])/(Sqrt[e]*(a + b*x^2)^(1/4))])/(b^(3/4)*e^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0800657, antiderivative size = 113, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {451, 329, 331, 298, 205, 208} \[ -\frac{d \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt{e} \sqrt [4]{a+b x^2}}\right )}{b^{3/4} e^{3/2}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt{e} \sqrt [4]{a+b x^2}}\right )}{b^{3/4} e^{3/2}}-\frac{2 c \sqrt [4]{a+b x^2}}{a e \sqrt{e x}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x^2)/((e*x)^(3/2)*(a + b*x^2)^(3/4)),x]

[Out]

(-2*c*(a + b*x^2)^(1/4))/(a*e*Sqrt[e*x]) - (d*ArcTan[(b^(1/4)*Sqrt[e*x])/(Sqrt[e]*(a + b*x^2)^(1/4))])/(b^(3/4
)*e^(3/2)) + (d*ArcTanh[(b^(1/4)*Sqrt[e*x])/(Sqrt[e]*(a + b*x^2)^(1/4))])/(b^(3/4)*e^(3/2))

Rule 451

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[d/e^n, Int[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a,
 b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n*(p + 1) + 1, 0] && (IntegerQ[n] || GtQ[e, 0]) && (
(GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1]))

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 331

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{c+d x^2}{(e x)^{3/2} \left (a+b x^2\right )^{3/4}} \, dx &=-\frac{2 c \sqrt [4]{a+b x^2}}{a e \sqrt{e x}}+\frac{d \int \frac{\sqrt{e x}}{\left (a+b x^2\right )^{3/4}} \, dx}{e^2}\\ &=-\frac{2 c \sqrt [4]{a+b x^2}}{a e \sqrt{e x}}+\frac{(2 d) \operatorname{Subst}\left (\int \frac{x^2}{\left (a+\frac{b x^4}{e^2}\right )^{3/4}} \, dx,x,\sqrt{e x}\right )}{e^3}\\ &=-\frac{2 c \sqrt [4]{a+b x^2}}{a e \sqrt{e x}}+\frac{(2 d) \operatorname{Subst}\left (\int \frac{x^2}{1-\frac{b x^4}{e^2}} \, dx,x,\frac{\sqrt{e x}}{\sqrt [4]{a+b x^2}}\right )}{e^3}\\ &=-\frac{2 c \sqrt [4]{a+b x^2}}{a e \sqrt{e x}}+\frac{d \operatorname{Subst}\left (\int \frac{1}{e-\sqrt{b} x^2} \, dx,x,\frac{\sqrt{e x}}{\sqrt [4]{a+b x^2}}\right )}{\sqrt{b} e}-\frac{d \operatorname{Subst}\left (\int \frac{1}{e+\sqrt{b} x^2} \, dx,x,\frac{\sqrt{e x}}{\sqrt [4]{a+b x^2}}\right )}{\sqrt{b} e}\\ &=-\frac{2 c \sqrt [4]{a+b x^2}}{a e \sqrt{e x}}-\frac{d \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt{e} \sqrt [4]{a+b x^2}}\right )}{b^{3/4} e^{3/2}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt{e} \sqrt [4]{a+b x^2}}\right )}{b^{3/4} e^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0303367, size = 100, normalized size = 0.88 \[ \frac{x \left (-2 b^{3/4} c \sqrt [4]{a+b x^2}-a d \sqrt{x} \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a+b x^2}}\right )+a d \sqrt{x} \tanh ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a+b x^2}}\right )\right )}{a b^{3/4} (e x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^2)/((e*x)^(3/2)*(a + b*x^2)^(3/4)),x]

[Out]

(x*(-2*b^(3/4)*c*(a + b*x^2)^(1/4) - a*d*Sqrt[x]*ArcTan[(b^(1/4)*Sqrt[x])/(a + b*x^2)^(1/4)] + a*d*Sqrt[x]*Arc
Tanh[(b^(1/4)*Sqrt[x])/(a + b*x^2)^(1/4)]))/(a*b^(3/4)*(e*x)^(3/2))

________________________________________________________________________________________

Maple [F]  time = 0.024, size = 0, normalized size = 0. \begin{align*} \int{(d{x}^{2}+c) \left ( ex \right ) ^{-{\frac{3}{2}}} \left ( b{x}^{2}+a \right ) ^{-{\frac{3}{4}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)/(e*x)^(3/2)/(b*x^2+a)^(3/4),x)

[Out]

int((d*x^2+c)/(e*x)^(3/2)/(b*x^2+a)^(3/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d x^{2} + c}{{\left (b x^{2} + a\right )}^{\frac{3}{4}} \left (e x\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(e*x)^(3/2)/(b*x^2+a)^(3/4),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)/((b*x^2 + a)^(3/4)*(e*x)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(e*x)^(3/2)/(b*x^2+a)^(3/4),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [C]  time = 13.9976, size = 85, normalized size = 0.75 \begin{align*} \frac{\sqrt [4]{b} c \sqrt [4]{\frac{a}{b x^{2}} + 1} \Gamma \left (- \frac{1}{4}\right )}{2 a e^{\frac{3}{2}} \Gamma \left (\frac{3}{4}\right )} + \frac{d x^{\frac{3}{2}} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{4}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac{3}{4}} e^{\frac{3}{2}} \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)/(e*x)**(3/2)/(b*x**2+a)**(3/4),x)

[Out]

b**(1/4)*c*(a/(b*x**2) + 1)**(1/4)*gamma(-1/4)/(2*a*e**(3/2)*gamma(3/4)) + d*x**(3/2)*gamma(3/4)*hyper((3/4, 3
/4), (7/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(3/4)*e**(3/2)*gamma(7/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d x^{2} + c}{{\left (b x^{2} + a\right )}^{\frac{3}{4}} \left (e x\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)/(e*x)^(3/2)/(b*x^2+a)^(3/4),x, algorithm="giac")

[Out]

integrate((d*x^2 + c)/((b*x^2 + a)^(3/4)*(e*x)^(3/2)), x)